
Fake News Detection:
Fact checking and Bias detection

A Report

submitted in partial fulfillment of requirements for the

degree of

Masters of Technology

in Computer Science and Engineering

by

Abhishek Udhav Bagade

Roll No : 163059005

under the guidance of

Prof. S. Sudarshan

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

June, 2019

Abstract

The current public discourse is heavily affected by the propagation of Fake News
and media. This has severely undermined various societal structures and eroded
the trust of general public. The system we plan to build will tackle this disinforma-
tion and provide insights to users to make an informed decision about the veracity
of the news article.

One approach is to check the given text against a set of articles, users generally
use search engines like Google, Bing etc to accomplish this part but these come
with a set of restrictions. We create our own data store to over come these limita-
tions. Once we have information to verify our claims against we can give a verdict
about the veracity of the claim.

A given text contains may indicators which may indicate a particular bias to-
wards particular entity. We use Natural language processing and Machine learning
to detect these features and check the bias of given text. We use signals from social
media to identify clusters of users which show bias towards a particular political
entity and use this information as a labelled dataset in supervised classification
problem.

We also explore the community characteristics of politically active twitter users
to identify source based political bias.

iv

Acknowledgements

I would like to thank my guide Prof. S. Sudarshan for always helping me and
pointing me in the right direction whenever I was stuck. His guidance is instru-
mental in the completion of this M.Tech thesis. I would also like to thank Prof.
Soumen Chakrabarti and Prof. Kameswari Chebrolu for their invaluable sug-
gestions and improvements suggested in the work as part of the thesis.

I would also like to thank everyone in the InfoLab, IIT Bombay for their help
and guidance and Computer Science and Engineering department for providing
the highest quality education and facilities.

v

Contents

1 Introduction 1
1.1 Previous Approaches . 1
1.2 Approach . 2
1.3 Fake News Detection system: Previous work 2
1.4 Fake News Detection System Architecture 3
1.5 Hyper-partisanship Detection & Political Bias estimation 4
1.6 Report Plan . 5

2 Data: Crawling and pipelines 6
2.1 Scrapy . 6

2.1.1 Architecture . 7
2.2 FND System Schema . 8
2.3 Extracting data . 9
2.4 Pipelines . 11
2.5 Deployment . 12

2.5.1 Available options . 12
2.5.2 Approach taken . 13
2.5.3 Running archive crawlers . 13

2.6 System services . 13
2.6.1 Directory structure . 13
2.6.2 Maintaining the state of last crawl 14
2.6.3 Virtual Environments . 14
2.6.4 Logging . 15
2.6.5 Systemd services . 15
2.6.6 Cron jobs . 16

2.7 Challenges and their solutions . 16
2.8 Improvements and tweaks . 18

3 Political Bias Detection 20
3.1 Previous Work : Hyper Partisanship detection 21

3.1.1 Semeval 2019 Task 4: Hyper partisan News detection 21
3.2 Political Bias detection using text in Indian Media 22
3.3 Methodology for crawling twitter . 23
3.4 Constructing Influence Graph . 23

3.4.1 Mention graph . 24
3.4.2 Retweet graph . 24
3.4.3 Clustering Algorithm . 25

vi

3.5 Clustering Results . 26
3.6 Organizing and Crawling Data . 26

3.6.1 Tweets . 26
3.6.2 Cluster IDs . 28
3.6.3 News Articles from twitter handles 28

3.7 Text Classification . 28
3.7.1 Universal Language Model Fine Tuning 28
3.7.2 Our Setup . 29
3.7.3 Results & Discussions . 30

3.8 Source Based political bias detection . 32

4 Summary and Conclusions 33

Bibliography 34

vii

Chapter 1

Introduction

Fake news has been a large problem in recent times due to the exploitation of
social media as a propaganda tool by Governments, Corporations etc. Tackling
fake news becomes a major problem due to scale of information exchanged on
these platforms. The rise in internet adoption by the general populace increases
the scope of such disinformation.

Majority of the cases of propagation of fake news are by actors with malicious
intentions but sometimes they are just mistakes on users part. Simply cross check-
ing with credible sources is enough to supply users with enough information to
judge the veracity of claims. Generally people confuse names, events and other
specific information about an event, these are then propagated to other users
through oral or other communication medium like social networking sites. We
can easily search the web and find out the true information. This approach works
for individual queries but the limits implemented by major search providers like
Google make it impossible to use this on a system level. Current fact-checking sys-
tems take varied approaches towards solving this problem and we discuss them in
next section.

1.1 Previous Approaches

Fact checking systems currently take one of these two approaches

1. In first approach the whole process is automated and is modelled as end to
end learning task and the system returns either a score of fake-ness or a
binary label(fake or not fake). This type of systems fail to capture all the
semantic features of data but do well in some aspects, but one of the most
important aspect of identifying fake news is convincing the user why the news
article is fake. The explainability of the system is one of the important factors
in tackling fake news and needs to be incorporated in any model. Ex. Fake-o-
meter by IIIT-H

2. In second approach the whole system depends on the manual fact checking of
claims, this set of fact checkers are generally experts in related domains like
journalists etc. These systems work pretty well as long the choice of experts
is unbiased. But this approach ignores the fact that the article itself has many

signals which can be used to identify bias of news articles. Various machine
learning models have been proposed which can be used to assist the user
make informed decisions. Sub tasks such as Hyperpartisanship detection,
target Sentiment analysis etc help the user to Identify if the article is genuine
or not. This approach also comes with the problem of multiple sites with
different information. Checking across multiple sites becomes a task in itself.
Ex. Fact checking sites such as BoomLive etc.

1.2 Approach

We use a combination of both approaches to get better results. We use the already
available crowd sourced data on web sites such as https://www.boomlive.in/,
https://check4spam.com/ etc. These sites serve as a good repository of fake and
genuine articles. We can query against this source of articles and return the ver-
dict. Currently the way people search existing fact checking sources is by using
either the search functionality in the web site itself or using a search engine like
Google. Google doesn’t allow users to query using more than 32 words, this makes
matching full length articles impossible. We create a separate collection of articles
from multiple fact checking sites to allow the user to use a single service to search
over multiple sources.

In case of completely new articles not seen by fact checking sites, we can give
related articles matching the given text and all the information extracted by lin-
guistic models. We leave the final decision regarding fake-ness on the user rather
than making a judgment. To summarize we do the following to make sure we detect
a fake article

1. Collect all the major news articles from relevant sources

2. Find matching news articles for the given text/article.

3. Gain insights from the data available which will help the user verify the cred-
ibility of given text.

In this report we mainly tackle first 2 problems. we try to create a comprehensive
data set of news articles from which we can query the relevant articles and we
design an efficient search and retrieval system. We discuss the architecture of the
system and the technical challenges faced in deploying it. The task of extracting
insights from the text would be tackled in the next phase.

1.3 Fake News Detection system: Previous work

Previous work done as a part of an internship project crawled news sites using in-
dividual scripts written in python. The scripts downloaded the raw HTML page and
then extracted data using BeautifulSoup library. These scripts were run regularly
using a central script which scheduled as well as executed the crawler runs. The

2

https://www.boomlive.in/
https://check4spam.com/

scripts lacked a uniform structure across all the crawlers and didn’t take advantage
of common operations performed across crawlers.

We also studied various neural model architectures which performed classifica-
tion on news datasets. Some of them worked on Stance detection, Hyper partisan-
ship detection etc. but they performed poorly in case of Indian news. We try to
construct Indian news specific datasets and train various models on it.

1.4 Fake News Detection System Architecture

The current system has an architecture shown in figure 1.1. We introduce each
component briefly next,

1. Crawlers: The existing crawlers were supposed to be proof of concept and
never meant to scale to the levels we require. We replaced the per site python
scripts with Scrapy Framework [1]. This allows to consolidate the whole
scraping process into a single framework. This also allows us to use com-
mon data processing pipelines for all Scrapers and define a common schema
for the extracted data. The advantages of the framework are discussed at
length in section 2.1.

2. Data Pipelines: The scraped data from crawlers goes through multiple
pipelines which perform various operations. The pipelines are described in
detail in 2.4. The broad idea of what each Pipeline does is given below.

(a) Validation Pipeline: Performs basic validation checks on the extracted
data and eliminates blank articles.

(b) Stat Aggregation Pipeline: Collects various statistics about the crawler
run and the number of articles crawled and inserts into a Database.

(c) WritetoFile Pipeline: Dumps the crawled data in JSON files. The files
are organized by site name and the topics it belongs to

(d) ImageInsert Pipeline: Downloads all the images in the articles crawled
and indexes it along with metadata in Elastic search[2] back-end.

(e) IndexSolr Pipeline: Indexes the crawled article in the Apache Solr
backend.

(f) NLU Pipeline: Extracts and stores various information about the article
body using IBM Watson NLU [3] API.

(g) OCR Pipeline: We use Tesseract OCR engine [4] to extract text from
images crawled in both English and Hindi language.

(h) Video Pipeline: We store hashes extracted from videos present in arti-
cles in Solr.

3. Indexing and Search: We use two different back-end services for indexing
and searching our scraped data. We use Apache Solr[5] for text data like
article body, URL, etc and Elastic Search[2] for indexing and searching the

3

Images crawled. We use this information to find if text/article queried is al-
ready reported in some news source. Images also constitute a major part in
dissemination of fake news. We check if a given image occurs in an article
already crawled and the queried context is different than the original context.

4. Fake News API & Web front-end: We allow access to our system using a
REST-ful API for querying the image and text system separately. The final API
combines both into one unified API. As a proof of concept we have a simple
web client which returns the result to users against queries.

5. System services: We use systemd and cron to schedule the services and en-
sure they are restarted on failure. We also use separate virtual environments
to make sure the dependencies do not clash with each other.

The overall architecture of the system is shown in 1.1. We discuss each of the com-
ponents in detail in the rest of report

Figure 1.1: Fake news detection system Architecture

1.5 Hyper-partisanship Detection & Political Bias

estimation

First phase of our work concentrated on detecting whether the given text is Hyper-
Partisan or not. We trained some Machine learning models and got reasonably good
results on the Semeval Dataset [6]. The next challenge was using this model in the
context of Indian political news. Estimating whether an article is hyperpartisan or
not becomes a lot harder in our case as we lack experienced annotators. We try to
overcome this problem by reducing it to political bias estimation problem.

Given a text we estimate the political bias of it towards one of three major
political entities. We apply various methods to get the labelled data in our context.

4

We then apply various ML models to see which performs better. We discuss this in
detail in section 3

1.6 Report Plan

We discuss the two major aspects of the Fake news detection system we build in
this report.

1. In chapter 2 we discuss the system we have and its architecture. We discuss
in detail the design decisions we made and the general system structure. This
section is supposed to act as a manual for the system.

2. Chapter 3 of report focuses on gathering labelled data and predicting the
political bias of given text. We discuss the approaches we take for classifying
the given text based on the political bias they show towards a set of political
entities.

5

Chapter 2

Data: Crawling and pipelines

The success of the system depends majorly on the amount of data available to
search and match. Majority of the news articles can be easily found in major media
sources, cross referencing them with the query gives the user enough information
to see if the given text is true or not. This is only possible if we have an extensive
store of articles which we can query against.

One more reason in favour of fact checking articles against previously published
articles is the rise of fact checking sites such as https://check4spam.com/, https:
//www.boomlive.in/ etc. Such sites if extensively crawled will solve most of our
problems. These sites work by using crowd-sourcing to recognize news articles as
fake or genuine. This information is critical to us and we include such sites in our
crawl.

Scraping websites comes with its own challenges and there are many approaches
one can take. The approach used in the system was supposed to be a proof-of-
concept and had many drawbacks as it wasn’t supposed to be ready for deploy-
ment.

The initial approach used custom python scripts to crawl websites and extract
data using python libraries such as Beautiful Soup etc. The problem with such
approach is common operations post extraction such as indexing the data, storing
it in files etc. becomes difficult to co ordinate among the different crawlers. Many
of the tasks are common to crawlers and setting up a data pipeline would solve
many of the problems. Also many of the standard crawler operations have to be
implemented from scratch which is re-inventing the wheel.

Considering above reasons we choose to migrate to Scrapy Framework[1]. This
is a python framework which is developed only for crawling and has many advan-
tages which we’ll discuss further in this chapter.

2.1 Scrapy

Scrapy is advertised as an ’An open source and collaborative framework for ex-
tracting the data you need from websites. In a fast, simple, yet extensible way.’.
The main advantages of scrapy for our project are

1. It reduces a lot of boiler plate code which is required for scraping and pro-
vides a very intuitive abstraction to operate with.

6

https://check4spam.com/
https://www.boomlive.in/
https://www.boomlive.in/

2. It provides simple methods to develop a Data pipeline, we can easily write
different pipelines to do majority of our tasks

3. Takes care of Data Extraction from the web page by either CSS or XSS rules.

4. Provides default pipeline implementations to download and store multimedia
content from web pages like images or videos.

5. Is extensible and open source which makes it easy to change the behaviour of
some components to better suit task at hand.

6. Provides settings to bypass scraping protections on news sites.

2.1.1 Architecture

This section gives a brief overview of the architecture of Scrapy, the architecture
of scrapy can be understood better through figure 2.1

Figure 2.1: Scrapy Framework Architecture[1]

The general data flow in Scrapy occurs as follows

1. The Spider sends out a set of initial requests to the engine

2. The engine then schedules the requests in the Scheduler

3. The Scheduler then returns the next requests to the engine

7

4. The engine then passes the requests to Downloader through the Downloader
middleware

5. The downloaded response is then sent to engine again passing through the
Downloader middleware

6. The scraped information is sent by engine to spider in form of response.

7. The spider then processes the scraped data and returns the Items to engine

8. The items are then passed to Item Pipelines and if there are any more requests
to be scraped they are sent to scheduler.

9. This process continues till the scheduler queue is empty.

2.2 FND System Schema

Using Scrapy allows us to use a common schema for the scraped data across
all spiders. The schema is defined in items.py file. The common schema class
(FNDFields in our case) inherits the scrapy.Item class. We define the fields as
scrapy.Field()object. We define the following fields for our system.

1. source_type: The type of source can be classified into 3 major types for now
i.e news_article,fact_checking and satire

2. source_name: The name of the site from which the article is scraped

3. title: The title of the news article scraped

4. date_published: The date at which the article was scraped

5. image_link: url of the images used in article.

6. description: A short description of the article if provided in article or first 5
sentences of article body.

7. source_article_link: URL of the article scraped

8. article_body: The text body of the article scraped

9. time_scraped: The time at which the article was scraped

10. article_id: Unique ID for the news article crawled. This is also the file name
for the JSON file stored on disk.

11. article_category: The category of the news article like politics,sports etc
extracted from the news source

12. image_details: The checksum and other related information of the image in
article which is downloaded.

8

13. debunked: Denotes the credibility of the article based on source. We have
currently 4 values for this field.

(a) verify: This information is available but the claim has to be verified by
the user as true or not

(b) fake: The claim has been marked as fake in debunking sites

(c) uncertain: The system cannot label this article and expert opinion is
needed to give judgement.

(d) genuine: The article is from a trusted source and is assumed to report
the truth.

14. ibm_nlu: A higher level dictionary for all the data returned by IBM watson
NLU API. This field contains additional information about the text body such
as major entities, sentiment of the text, sentiments toward entities etc. This
information allows us to do additional analysis and generate useful insights.

15. tags: The top entities and tags for the scraped article (extracted from source)

16. ocr_english: Contains English text extracted from images scraped from the
article crawled

17. ocr_hindi: Contains Hindi text extracted from images scraped from the arti-
cle crawled

18. ocr_english: Contains English text extracted from images scraped from the
article crawled

19. hash_value: Contains a hash value calculated from images crawled. This is
to speed up similarity search

20. video_link: Contains url of the videos linked in the article crawled.

21. raw_html: Contains raw HTML code scraped from URL. This is so that we
have a way to extract additional information in future

2.3 Extracting data

To collect extensive data we need to extensively crawl the major Indian news media
outlets. We choose a collection of Indian news sites from a mix of biased, fact-
checking and genuine sites. This allows us to match information against news
sources having different biases.

Every site has a different layout and the problem with deploying a single crawler
for all sites using libraries like goose or BeautifulSoup is that, the data extracted is
not clean. We deploy different crawlers for each website. Each crawler extracts in-
formation described in section 2.2. For this we take help of Scrapy’s response.css()
method. It uses the sites CSS layout to create a DOM model. We can then extract
corresponding fields using the site specific queries. An example query is shown in
in below

9

#Extracts the description from website and stores it as description in
dictionary

response_dict["description"]=response.css(’span[class=mvp-post-excerpt\
left] p::text’).extract_first()

We have deployed crawlers for the following sites,

1. Times of India

A trusted news media site owned by Bennett, Coleman & Co. Ltd. Its one of
India’s leading news publishers

2. The Hindu

One of India most popular English publishing houses, owned by The Hindu
Group. Popular mostly in South India. We crawl this as a trust worthy news
source.

3. Check4Spam

A Spam detection site which uses crowd sourcing to verify the truth of What-
sapp forwards and other rumours. Its operated by Shammas Oliyath and Bala
Krishn Birla, operated as a non-commercial entity. We use this site as fact
checking source.

4. BoomLive

Another fact checking site part of Ping Digital Network. This also depends on
human expertise to classify claim as true or fake.

5. Firstpost

A news site part of Network18 media conglomerate owned by Reliance Indus-
tries. We classify news articles from this site as truthful.

6. Postcard

A biased news sites which provides a very biased and one sided articles. We
classify all the news articles from this site as fake. This site started out as
a facebook page and got subsequently banned from it. We do not include its
results in the search results.

7. AFP Fact check

A fact checking site included by google in its Fact checking portal. We crawl
it daily and also have crawled all the historical data.

8. AltNews

A Non-Profit entity which provides regular fact checks on recent political and
other claims. We crawl it daily and also crawl archived articles.

9. India Today Fact check

A fact checking only version of the IndiaToday magazine. We crawl it daily as
well all the archived articles.

10

https://timesofindia.indiatimes.com/
https://www.thehindu.com/
https://check4spam.com/
https://www.boomlive.in/
https://www.firstpost.com/
https://postcard.news/
https://factcheck.afp.com/afp-india
https://www.altnews.in/
https://www.indiatoday.in/fact-check

10. News API

A Public API which indexes articles from over 30,000 worldwide sources. This
aggregates news from various sources and provides a convenient access to
multiple sources we are not crawling. We crawl this API endpoint every 3
hours

11. Quint Fact check

Fact check offering from the Quint magazine. One of the few fact checking
sites from India approved from International fact checking network. We crawl
this site every 3 hours.

12. Right Log

A right wing site which often has articles with a heavy right wing bias. We
crawl articles from site and label them as biased.

2.4 Pipelines

To accomplish common task for crawled articles scrapy provides Item pipelines,
they are generally used to do tasks like cleansing data, inserting it into databases
etc. Each Item pipeline component is a python class which implements methods
which are executed at different stages of execution. Code block 2.4 shows the basic
structure of a pipeline and when the methods are called.

class PushSolrPipeline(object):
def open_spider(self,spider):

#Executed once at the start.
def from_crawler(cls, crawler):

#used to access core crawler objects like settings, signals etc.
def process_item(self,item,spider):

#executed for every article scraped, can be used to process data,
insert into a database etc. Should return Item or Drop the item
from pipeline.

def close_spider(self,spider):
#Executed once when the spider is closed.

We now take a look at every pipeline component in detail.

1. Validation Pipeline
This pipeline performs basic checks on the extracted data, ensuring that the
data scraped is not blank. This pipeline mainly does the following things

(a) Check if article body is not blank, if it is drop the item.

(b) Check if the article is associated with a category, if not drop the item

(c) Check if the article has an article ID , if yes check if it is a number and
not text (as we use it as unique ID), if no drop the article.

11

https://newsapi.org/
https://www.thequint.com/news/webqoof
https://rightlog.in/

2. Stat Aggregation Pipeline
This pipeline aggregates stats about the crawler run. Currently is a work in
progress.

3. WritetoFile Pipeline
This dumps the crawled data dictionary in form of a JSON file. We store the
JSON file (one per article) organized by the Crawler name and category of
article.

4. ImageInsert Pipeline
This pipeline downloads a high resolution version of the linked images in
the articles. This downloaded image is then indexed using the Image match
library[7] into Elastic Search back-end. Indexing happens once per image.
Along with the image the scraped data is also indexed by attaching it as meta-
data. This helps us to get the source article directly when we query an image,
instead of getting the ID and then querying SOLR.

5. IndexSolr Pipeline
This pipeline holds the extracted data in memory and Indexes all the articles
crawled when the crawler completes its execution. The article is indexed
using PySolr Library which communicates with the Solr REST API.

6. NLU Pipeline
We send the body of the scraped article to IBM Watson NLU API [3] to get
different information like major entities in the text, sentiment of the article,
sentiment towards entities etc. We store the response in ibm_nlu field of
schema.

7. OCR Pipeline
Some of the images we crawl have text which are crucial for fact checking
purposes. The information available in the image is sometimes available in
the accompanying text but most of the times the text is not quoted verbatim.
In such cases it becomes harder to cross reference and index the text avail-
able. We use Tesseract OCR engine [4] to do optical character recognition on
the given image. The pipeline runs on the downloaded images and extracts
both english and hindi text. This pipeline takes significant amount of time to
complete and we run it only on daily crawls.

2.5 Deployment

Deploying and running the crawlers regularly can be done in different ways and
each method has different pros and cons.

2.5.1 Available options

Previously the crawlers were run by executing them regularly through python
scheduler which was called through a script which was running in background. The

12

problem with this approach is that the process might get killed and the crawlers
may not run. Scheduling from scripts is always unreliable and may cause us to
miss important news events.

Other option was to deploy the scrapers as daemon with the help of an inbuilt
utility called scrapyd. This allows us to schedule spiders through a JSON API. The
problem with this approach in the process of ’eggifying’ the project all the paths
and environment specific information is lost. This is problematic as we require this
information to store data on Disk. The official documentation also advises against
using scrapyd for projects which write to disk.

2.5.2 Approach taken

The option we used is writing cron jobs to schedule the spiders every 3 hours. Cron
jobs are reliable and work as long the server is up. We use cron to execute a script
which runs all the crawlers sequentially.

2.5.3 Running archive crawlers

Deploying archive crawlers comes with its own set of problems. The archives we
crawl have almost 1 million articles which when scraping run for multiple days. If
we schedule a cron job, is the process is killed the crawler stops functioning. What
we needed was a process which starts itself after failure.

We created systemd services which restart on failure and runs the crawler 24/7
until completion. This method of deployment is suitable for large scale crawls
which will work for extended period of time.

2.6 System services

In this section we discuss some of the system specific tools and architectures.

2.6.1 Directory structure

This section discusses the directory structure of the project. The scrapers-scrapy
folder has all the scraping related code and the scraped data. The scrapy project
layout is shown in figure 2.2. All the scrapers are in /scrapers-scrapy/fnd/fnd/
spiders folder and all the other files like settings.py,pipelines.py etc are in the
project base folder.

The Data folder in scrapers-scrapy contains all the scraped data. The direc-
tory structure is shown in 2.2. We maintain a separate folder for each crawler to
organize the data better. Each scrapers folder has the following files

1. Category directories containing the JSON files of articles crawled. The cate-
gories are extracted from sites. Articles which don’t have any category are
stored in Misc. directory

13

/scrapers-scrapy/fnd/fnd/spiders
/scrapers-scrapy/fnd/fnd/spiders

scrapers-scrapy
fnd

fnd
spiders

TOISpider
(Other Spiders)

settings.py
pipelines.py
items.py
middlewares.py

scrapers-scrapy
Data

TOISpider
(other spiders)

India
(other categories)
image

(crawledimages)
job

(files related to
crawler state)

scrapy.log

Figure 2.2: Scrapy Project directory structure

2. job directory contains all the book keeping information about the last spider
run like requests seen, requests queue etc.

3. image directory contains all the images downloaded by the spider. They are
stored as MD5 hashed file names.

4. scrapy.log file contains the logs from all the runs for the spider.

2.6.2 Maintaining the state of last crawl

While crawling it is important for the system to maintain the state of crawl till the
last successful run. This helps us to do duplicate detection and also maintain stats
of the run. Scrapy allows us to maintain state by using a Jobs directory which is
specified by the JOBSDIR attribute in settings.py. The problem with this approach
is doing this naively will create a common jobs directory across all the spiders. This
is not desirable as this will cause conflicts between different crawlers and will also
be highly inefficient. We solve this problem by specifying a unique jobs directory
for each crawler, this directory follows the directory structure shown in ??. This is
done by specifying the JOBSDIR parameter on a per crawler basis as is shown in
code block 2.3.

2.6.3 Virtual Environments

There are number of different systems, tool-kits and APIs which work together to
serve users request. Managing the dependencies becomes a major problem, also
in a common environment these dependencies may interfere with each other caus-
ing problems. We use virtual environments to manage python based dependencies.
Each virtual environment is stored separately and all the installed packages are
stored in the virtual environment directory. The advantage of virtual environment
is that the whole environment is wrapped in the python binary. So instead of acti-
vating the environment every time we have to run a command, we can directly run

14

class BoomLiveSpider(scrapy.Spider):
name = "BoomLiveSpider"
datadir = "/mnt/impecs/data/fakenews/scrapers-scrapy/data/"
close_down = False
language = "english"
custom_settings = {

’IMAGES_STORE’ : datadir+name+’/image/’,# Sets the image store for
each spider

’JOBDIR’ : datadir+name+’/job/’,# Sets Job Directory for each spider
’LOG_FILE’ : datadir+name+’/scrapy.log’,# Specifies the log file for

each spider
}

Figure 2.3: Code to set jobs directory in spider

the command using the binary from virtual environment. For example running the
crawler would be done efficiently done by the following command

/venv/bin/python3 scrapers scrapy

instead of
source /venv/bin/activate; python3 scrapers scrapy

This comes in very handy when we create systemd services. Using Virtual Environ-
ment also allows us to set proxy directly into binaries. This makes running crawlers
24x7 possible without any interruptions.

2.6.4 Logging

Considering we have many components interacting with each other we use exten-
sive logging throughout our project. We log every stage of pipeline as well as
crawlers. Logging this in a single file will make the file unwieldy and troubleshoot-
ing would be impossible. Instead we have separate log files for each crawler. We
set them using custom_setting parameter in crawler as shown in fig 2.3.

2.6.5 Systemd services

Our system has multiple dependencies and the uninterrupted execution of these
services is critical to the availability of the system. To ensure these systems start
on boot and restart on failure we create user level systemd services for all the
components of the system. These service’s dependencies are structured in a hier-
archical manner. We explain these services briefly below

1. solrfndṡervice

This service starts and ensures that the Apache solr[5] instance is always up
and running. It is started on boot and has no dependencies.

2. elasticfndṡervice

15

This service starts the Elastic search instance[2], it restarts the service on
failure. This service has no dependencies and starts on boot.

3. imageapifndṡervice

This service starts the Image search API server of the FND system . It
starts after both elasticfnd.service and solrfnd.service start. This service also
restarts on failure.

4. primaryapifndṡervice

This service starts the Fakenews API server. It starts after elasticfnd.service,
solrfnd service and imageapifnd.service starts. This service also restarts on
failure.

5. Other services

We have created other services for monitoring archive crawls, running other
services like jupyterlab etc.

2.6.6 Cron jobs

The crawlers scrape the websites listed in section 3.3 for latest news articles. The
crawlers run every 3 hours every day. We have cron jobs to crawl the sources by
the frequency mentioned.

2.7 Challenges and their solutions

There were some challenges in scraping news articles and we discuss them and
the workarounds we have applied in this section.

1. Binding the crawl
Scrapy by default crawls in a Depth First order, which would be a problem
for us as we need to do only a 1 level traversal in most cases and 2 level in
worst case. So travelling in Breadth first order is required to bind the crawler.
Scrapy allows doing that by setting the following parameters in settings.py

DEPTH_PRIORITY = 1
SCHEDULER_DISK_QUEUE = ’scrapy.squeues.PickleFifoDiskQueue’
SCHEDULER_MEMORY_QUEUE = ’scrapy.squeues.FifoMemoryQueue’

2. User Agent blocking
Scrapy by default uses Scrapy/VERSION(+https://scrapy.org) as user agent.
Many publishing sites block unknown user agents and only allow user agents
corresponding to browsers to access content. If you use any other user agent
the site will give a 403:Access Forbidden error. So we set the user agent in
settings.py as follows,

USER_AGENT = ’Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:61.0) Gecko/20100101
Firefox/61.0’
This corresponds to Firefox browser.

16

Scrapy/VERSION (+https://scrapy.org)

3. Crawling Archives
We decided to crawl the archives of major news sites like Hindu and Times Of
India to have a comprehensive historical data set of news articles. Some sites
deploy some protections to make the archives crawler unfriendly, for example
TOI calculates the no. of days from some random day in 1800s and uses it in
URL along with the month,day and year of the archive list. Figuring this out
required analysis of all the JavaScript files and figuring out the logic so we
can crawl directly.

4. Downloading Images
Sites such as Hindu display images depending on the resolution of the display
used to access the image. Crawling them directly would fetch the lowest res-
olution image which would be problematic as we lose information when we
reduce the resolution. This may prove to be problem when the no of images
indexed increase, this may possibly give us false positives when queried. We
dynamically generate the image URL so that we get the highest resolution
image.

5. Handling Duplicates
Handling duplicate URLs is a very important part of the crawler, initially we
designed a Bloom-Filter based duplicate detection mechanism which worked
well but had some drawbacks and holding it in memory was a challenge.
We are currently using scrapy’s RFPDupeFilter class, which filters requests
based on their fingerprints. We plan to write a custom class in future which
utilizes a lightweight database but since the current duplicate filter works
reliably we are treating this change as an optimization.

6. Indexing Services unavailable
Indexing information into Elastic Search or Solr is just a single step in pipeline
and as such the article is saved in a JSON file even if it is not indexed. This
poses a problem as we are not keeping track of articles crawled and saved
but no indexed. To avoid this, we shut down the spider if the services are
unavailable. Closing the crawler in scrapy cannot be done from pipelines, so
we instead set a flag from pipeline which forces the crawler to shut down. We
can afford to do this as our repetitive crawls are generally crawling the same
content in multiple iterations.

7. When to index in SOLR?
SOLR allows you to index data through its REST API, the problem is this
involves sending an HTTP request. Though we don’t have to transmit data
over network (as crawler and solr run on the same system), the overhead
doing this once for every article scraped adds up and is undesirable. Instead
of indexing every article separately, we hold the crawled articles in memory
and index all the crawled articles at end. This has a possible downside of
loosing on durability property if the crawler abruptly exits. But considering

17

our crawlers work every 3 hours the data lost will be re-indexed in the next
crawl.

8. Index images into elastic search
The first iteration of the Fakenews API enabled both indexing and querying
images over a REST API. But this arrangement posed a potential threat, what
if some adversary decides to push images which propagate the fake news
instead of original one? This means that the user will see the malicious image
instead of original one. Initially the ImageInsertPipeline would index images
into Elastic search back end using the API, but since we have closed that
API endpoint we directly index into Elastic search using the Image-match[7]
library. This speeds up the pipeline and reduces unnecessary hops to travel.

2.8 Improvements and tweaks

1. Exclude Tag field for searching documents:
Tag field contains important entities in the article. This throws up irrelevant
articles when included in search fields. So we search without the Tag field
given a text article and only if that query returns no results we include the
field in query field. This reduces the number of irrelevant results consider-
ably.

2. Log failed queries:
Queries which fail in our system need to be logged so that we might get them
fact checked later and inform the user. We log the failed queries in a postgres
database named ’missed_queries’. We store the time of the query, the query
text and the image url and link to article if present. We also store the email
ID of the user querying to return results in the future if the query is resolved.

3. Remove duplicate results:
Multiple crawls or same crawlers run multiple times to test some configura-
tion change used to throw up duplicate entries. We used the group_by setting
in Solr to remove these duplicates. This change required a major rewrite of
the front end code. The results are now grouped by URLs and hence there
are no duplicates. Some cases like same article referred by slightly different
URLs do throw up duplicates but such cases are very few and can be ignored.

4. Changing the query parser:
To enable advanced search and filtering options we switch the query parser
from the DisMax query parser to eDisMax query parser which allows us to
use advanced search features like using conditional operators such as AND,
OR etc and support for full lucene syntax.

5. Change all the requests to POST:
Fake news API initially worked by sending GET requests to the API endpoint.
Given the security considerations and the possibility of exposing users Iden-
tity through the queries sent we switched to a POST based model for the front
end API.

18

6. Upload size max limit:
Nginx limits the size of maximum uploads to using a configuration setting. We
had to change this setting in the host web sever as well on the reverse proxy
to enable large uploads for videos.

7. Limit search to title:
Small queries throw up irrelevant results when searched normally in solr. We
instead search only on title field if the given query is less than 5 words in
length. We search using our initial setup if the length of query is greater than
5.

8. Boost recent articles:
The results in solr are ordered by the score in default configuration. We want
the recently crawled articles to be on top. We set the boost field in solr to
boost scores of articles which are published closer to the current date. We set
this parameter while querying. Since this involves using the date_published
field which was initially configured as a string in Solr, we had to re-index the
whole core again.

19

Chapter 3

Political Bias Detection

The previous part of the report concentrated on acquiring data and searching it
efficiently to see if similar articles have been debunked or reported on previously.
In this section we use various techniques to identify and detect political bias in
a given text. There are multiple approaches and we study them in detail in the
following sections.

The past approaches to detecting political bias work by extracting linguistic
features from text and then using machine learning models like SVM, decision tree
etc to predict the category which is a generally a variation of how fake or biased
the given text is. Some datasets like semeval dataset [6] label the text based on
source(or publisher in this case) and others label individual articles by human fact
checkers. Both of these approaches have problems, if we use human fact checkers
the amount of data we get won’t be enough to train a good model. This can be seen
in the semeval dataset where the per article labelled dataset only has 645 articles.
The other approach is labelling the text by source. The semeval dataset does this
by using as source of bias of a news source. There are multiple problems with this
approach

1. The credibility of labelling source is a major factor. People generally tend
to dismiss sources which conflict with their view point. Convincing people
about the bias of a particular source or article becomes easier if there is a
mathematical way of explaining the bias labels.

2. There is an implicit assumption that all articles from source have the same
bias as the sites but we know that this isn’t true. Even biased sites publish
articles which are credible, labelling them all as biased would lead to loss of
credibility. We need to generate bias labels on a per article basis

3. One more problem with annotating based on human fact checkers is gauging
political bias is a very subjective problem. Articles which are judged to be
biased towards one political entity by one factchecker may be shown to be
biased towards other entity by other author. This subjective bias in labelling
articles by authors can be mitigated by increasing the number of fact check-
ers labelling the same article and taking a majority vote on the label for the
article. This additional overhead along the with the cognitively taxing job of

20

MediaBiasFactCheck.net

reading an article and finding its bias makes annotation of news articles by
human factcheckers unviable.

3.1 Previous Work : Hyper Partisanship detection

Hyper partisanship is defined as as "exhibiting blind prejudiced or unreasoning
allegiance to one party, cause or person" [6]. Majority of fake news in social media
circles can be seen to come from relatively unknown media sources with dubious
credentials. This content is heavily subjective and in general is worded differently.
The prevalence of such sites on known ’troll’ pages is a matter of concern as many
people mistake them for actual media houses. These pages also name the domains
similar to established houses, this causes confusion among the users and they take
the information disseminated on them on face value.

Hyper partisan articles are easy to identify by humans but doing automatically
is hard. We plan to identify the bias in articles towards right wing or left wing.
Semeval 2019 task 4 tackles this problem and provides a comprehensive dataset
of a million labeled articles to test our models. We discuss it in detail in the next
section.

3.1.1 Semeval 2019 Task 4: Hyper partisan News detection

Hyper partisan News detection is one of the tasks in Semeval 2019 workshop on
Semantic evaluation. Following are the details about the task taken from the offi-
cial website [6]

1. Task
Given a news article text we wish to classify the partisanship of the text in
one of the five categories i.e right, right-center, least, left-center, left.

2. Data
The organizers provide 1 million articles labelled by hyper partisanship and
bias. Hyper partisanship is a binary label, whereas bias can be one of five
classes right, right-center, least, left-center, left. The dataset is split 80-20
into training and validation sets.

Modelling this as a multi class text classification problem with the given text
data as input and one of five classes as output we managed to achieve an cate-
gorical accuracy of 90% on test set.The accuracy is the mean accuracy rate across
all predictions for multi class classification problems The model uses TFIDF vector
representation over a vocabulary of 30000 words. These are then supplied to a neu-
ral network with two dense layers of 512 units each and final dense layer of 6 units
to generate labels. This neural network surprisingly performs well given its sim-
plicity. The model has 15626246 trainable parameters which are trained through
Adam optimizer. We plan to improve this model by using other optimization and
adding linguistic features.

21

Figure 3.1: Neural network Architecture

3.2 Political Bias detection using text in Indian Me-

dia

Detecting political bias is useful in Indian Context as the current political climate in
India causes people to distrust media sources which do not adhere to their biases.
People are more likely to question the credibility of the news source rather than
government policies, one of the best indicators of this is the comments section of
major media sources on social networking sites.

Many media houses are clearly politically biased. These biases can be attributed
to the ownership patterns of media conglomerates, the political alignment of the
owners or the prevailing political inclination of majority. Our aim is to detect this
political bias and give users an idea of the bias a certain publisher has.

• Limitations

Our initial plan was to create a dataset similar to the dataset in the semeval
task but suited to Indian context. There were some limitations in this ap-
proach which we discuss briefly

1. We lacked access to human annotators which the semeval data set used
to manually label articles as hyper partisan or not.

2. Labelling by source is problematic and the assumption that all articles
from a particular source are biased towards some political ideology doesn’t
hold up in real world. Many sites regularly publish articles which are
trustworthy but some articles are particularly biased.

22

3. Source bias changes according to various factors like ownership of pub-
lishing house, current political climate, public opinion etc.

To overcome these limitations we change our problem statement to Identifying
political bias of a given text instead of hyper partisanship detection. Given an
article we wish to classify the article as biased towards one of the multiple political
parties and their allies. We describe in detail the methodology we applied to get
the clusters and how we train different models to predict the bias

3.3 Methodology for crawling twitter

To label the crawled data we take signals from social media more specifically from
twitter.com . We use twitter to identify community of users who show a bias to-
wards a particular political entity (in our case the three major political parties and
its allies). We crawl twitter using an initial list of 250 IDs scraped from a social me-
dia analysis site which lists political handles called and additional 400 IDs scraped
from official pages of political parties. These ID act as initial set of IDs for which
we crawl all tweets which mention some other user. We filter out the tweets which
have mentions in them by using twitter advanced search features. We get the store
the tweet id, text, retweet count and favourite count. Once we finish this is initial
crawl we select handles for the next level of crawl using the following heuristic

1. Get all the twitter handles mentioned in the tweets

2. Aggregate the count of retweets for a particular user over all tweets

3. Filter the handles by selecting only handles above a certain threshold (100 in
our case)

These handles then act as seeds for the next crawl. We can then repeat the process
multiple times to obtain deeper crawls. We do multiple levels of crawls to get
roughly 676000 tweets. This consists of tweets scraped from 6473 handles.

3.4 Constructing Influence Graph

Next we construct a graph with information collected in the crawls. We have two
ways of constructing the influence graph. We initially started with using user men-
tions as a form of endorsement but Conover et al. [8] came to the conclusion that
using retweets as endorsements leads to better clustering. The paper by Conover
et al. comes to following conclusions

1. Retweet Network is highly modular and easily separates into right wing and
left wing clusters as opposed to the mention cluster which performs very
badly.

2. Retweets are endorsements, people retweet those who they agree with polit-
ically. Mentions form a bridge between different ideologies.

23

socialbakers.com

3. Users interact with people in the community using retweets and between
others in opposing community using mentions.

So we use two different approaches to construct influence graph. First we con-
struct a graph using user mentions and then we use the same method to construct
a graph out of retweets.

3.4.1 Mention graph

We construct a directed graph G by using the heuristic mentioned below.

1. The nodes here (V) are twitter handles, since the handles are unique we con-
vert all of them to lower case to avoid false mismatches due to case changes.

2. The directed edge from point a to b exists if a tweet from user a mentions
user b.

3. For the weights of the edge we use 3 different methods

(a) The edge weight is the number of times a mentions b

(b) Instead of treating each mention similarly we use sentiment analysis to
analyze the sentiment of the tweet, we add the sentiment score (between
-1 to 1) of the tweet every time a user a mentions b. We shift the scale
of sentiment between 0 to 2 by adding 1 to sentiment score to remove
negative and 0 weighted edges.

(c) Some tweets are more influential than others. For example, if there are
100 tweets with positive sentiment between two users and only 5 nega-
tive tweets we shouldn’t be treating the sentiment scores of both simi-
larly. Instead we multiply the sentiment score of a tweet by the number
of retweets it got. We then add this score every time user a mentions b.

3.4.2 Retweet graph

We construct a similar directed graph G for retweeets using a slightly different
heuristic mentioned below mentioned below.

1. The nodes here (V) are again twitter handles which we convert to lower case.

2. The directed edge from point a to b exists if a tweet from user a retweets a
tweet from user b.

3. Since retweets do not contain accompanying text we set edge weights as the
number of times user a retweets user b.

After we construct the graph we use clustering algorithm by Blondel et al. [9]
to find out the communities in the graph. We discuss this algorithm in detail in
section 3.4.3

24

Figure 3.2: Modularity

3.4.3 Clustering Algorithm

The clustering algorithm by Blondel et al. [9] works by maximizing the modularity
measure as defined by Newman et al [10] . The algorithm initializes all nodes as
separate clusters and merges neighbouring nodes in single cluster such that the
modularity is maximised. The algorithm converges when modularity doesn’t in-
crease anymore. We use a variant of this algorithm for our task. The modularity
formulation by Newman et al. [10] measures the density of links inside the com-
munities as compared to the the links between communities and is given by 3.2

Here Aij represents the weight of the edge between nodes i and j. Also ki =∑
j Aij represents sum of all the weights of edges attached to vertex i. Community

of vertex i is given by ci , the function δ(ci, cj) is 1 if ci = cj and 0 if not. m is a
scaling factor which is given by m = 1/2

∑
ij Aij

We cluster the graph recursively, initial clustering gives us handles which be-
long to various areas like politics, bollywood, sports etc. We then keep only the
handles in the political cluster and remove the rest. Now we apply clustering al-
gorithm once again to further refine the clustering we got. After this clustering
operation we get clusters corresponding to the major political parties in India i.e
INC and BJP. Other political parties and their allies are in a separate clusters.

Our approach to clustering using mentions takes the sentiment of tweets into
account while constructing the graph in form of weights. This approach helps us
take into account the linguistic features into account while constructing the graph
as opposed to only the connectivity/endorsement features. Ozer et al. [11] try to
do the same by incorporating a user-word matrix which helps capture words being
used by a particular user. We instead incorporate sentiment information directly
into the graph structure. This helps us generate better clustering using the same
algorithm by Blondel et al [9].

The clustering algorithm can be controlled using a resolution parameter. The
default value of this parameter is set to 1. Setting it higher reduces the number
of communities and setting it lower than 1 increases the number of communities.
We experimented with different values o We initialize the algorithm with different
modularities to find out which provides best clustering.

One of the main reasons we use such a simple formulation instead of more
advanced and task specific formulations is the scalability of the algorithm. This
algorithm scales easily to more than a million nodes. Other algorithms don’t work
as effectively on large networks like we have.

25

3.5 Clustering Results

We run the clustering algorithm on both graphs. Fig 3.3 shows the clustering we
get on the mentions graph. The clusters we get correspond to various different
entities. Analyzing the clusters we can see that cluster we get can be grouped
according various parameters into groups as

• Handles related to Bhartiya Janata party

• Handles related to Indian National Congress

• Handles related to but not limited to Aam aadmi party

• Publishing houses and their twitter handles

• Bollywood and Entertainment Industry

• Handles from the USA

We similarly cluster the retweet graphs and we get similar results. The results
were a bit clearer and the handles corresponding to political handles were correctly
classified. We use the retweet graph in our final results.

3.6 Organizing and Crawling Data

The approaches we take depend heavily on the data we scrape from twitter.com.
In this section we discuss the methodology we follow to scrape data. We discuss
the crawling methodology and how we organize this crawl.

3.6.1 Tweets

Gathering data from twitter is one of the most important components of our system.
To ensure that the clustering is good enough we need comprehensive crawls which
focus on relevant twitter handles only. We use two approaches to crawl twitter

1. Crawling twitter through official API imposes limits on access which are re-
freshed after sometime. Initially we crawled twitter using Scrapy framework
[1]. Which functioned by scraping the generated HTML page after searching
through twitter search feature. The information scraped using this method
is not as rich as the one we get after using official twitter API, we mainly
miss out on retweet information. Also one of the major problems we have is
the links scraped from tweets frequently have spaces in URL which are very
hard to correct. Instead of crawling all the tweets we only crawl tweets which
mention some user in the first phase and in the second phase we crawl only
tweets containing some links to articles. In total we crawl ≈ 900 thousand
tweets using this method

26

Figure 3.3: Clustering results

27

2. Official Twitter API allows creation of multiple apps, which allows us to crawl
at a significantly faster speed. We use tweepy library as a wrapper over offi-
cial twitter API and write multi-threaded code to crawl tweets from a set of
users. This code works reasonably fast and provides us richer information.
Here each thread works with OAuth tokens corresponding to one application.
We wait if the API limit is exhausted till the quota is replenished. Using this
method we crawl ≈ 40 Million tweets.

The data scraped from twitter is stored in a PostgreSQL database to ensure high
availability and concurrent access to multiple users. We store data scraped from
both the methods in separate tables with Primary key constraint on Tweet ID. We
construct an Index on Tweet ID column for faster access.

3.6.2 Cluster IDs

Once we have the tweets we construct graph and find out the cluster IDs of every
handle as explained in 3.4 and store the information in a table. This for finding out
cluster labels of tweets and articles easily using simple SQL join queries.

3.6.3 News Articles from twitter handles

Once we have twitter handles and the communities we select handles which belong
to specific clusters which we are interested in. We crawl the URLs to news articles
from these handles. Since the domains can be different we use scrapy framework
along with Goose library to extract text and other data from the given URL. This
allows us to write a one general purpose scraper which will crawl all the URLs.
Scrapy’s working is explained in detail in Chapter 2.1. We have two Pipelines for
this crawler

1. WriteToFile Pipeline: We store the crawled tweet in JSON file.

2. InsertIntoDB Pipeline: We insert the crawled data into PostgreSQL database.

3.7 Text Classification

Once we gather data we have data in the form of Text and their labels. These labels
correspond to the cluster IDs to which the user who tweeted the article belonged.
We then use various neural architectures to do a 3-label classification task. We
discuss some of the approaches we take and their results

3.7.1 Universal Language Model Fine Tuning

We use this model architecture by Ruder et al. [12] to predict cluster IDs given
the text. ULMFiT works on the principle of transfer learning where we train a part
of the neural network (encoder in this case) on a general purpose task and then
use this pre-trained network as a component in the final model. Then we fine tune

28

Figure 3.4: ULMFiT model Architecture [12]

this pre-trained model for the classification or other NLP task .One simple way
transfer learning was used in NLP before was in the form of word embeddings like
Word2Vec or GLove. This technique only targets a models first layer as opposed to
ULMFiT which affects more layers.

Ruder et al. argue that language model training is the perfect task for transfer
learning in case of NLP. Language modeling captures many linguistic features like
long-term dependencies, hierarchical relations, sentiment etc. which are useful for
tasks in NLP like classification, question answering etc.

The working of ULMFiT model can be summarized in Diagram 3.4

3.7.2 Our Setup

We use the Pretrained Language model trained on Wikitext-103 dataset which con-
sists on 28595 Wikipedia articles. We fine tune this language model to our task
using the dataset we have from crawling Indian news sites as detailed in 2.1. Ini-
tially we used all 2 Million articles to fine tune the Language model but according
to the author training the language model above 1 million tokens causes no sig-
nificant gains. So we only fine tune the language model only on political articles.
We select articles based on the article categories given by the publishing houses.
Once we fine tune the language model we train the classifier on the dataset which
consists of article body as input and cluster IDs as labels.

We organize the experiments in two main categories

1. Classification using article body:

We use the article body as the input to the neural network the labels are the
cluster IDs

2. Classification using article title:

The title of article contains maximum information about the article accord-
ing to literature related to text summary. We do classification using title of
articles as input and cluster IDs are labels.

29

The data we have is summarized in table 3.1. We keep only the articles from
cluster IDs 0,3 and 10. These handles roughly correspond to the political twitter
handles from Bhartiya Janata party, Indian national Congress and Aam aadmi party
respectively. We can see the that from the most important handles in the clusters
as shown in fig 3.2

Cluster No. of samples

Cluster 0 1221499
Cluster 3 516926

Cluster 10 25326

Table 3.1: Data

We can see from table 3.1 that the data is heavily imbalanced. We use both
upsampling and downsampling and report results on both data sets.

Cluster 10 Cluster 3 Cluster 0

cnnnews18 ani indiatoday
arvindkejriwal narendramodi rahulgandhi
maryashakil timesnow shashitharoor

drkumarvishwas timesofindia ram_guha
ashu3page pmoindia svaradarajan

ashutosh83b sushmaswaraj incindia
vishaldadlani shivaroor priyankac19

Table 3.2: Top twitter handles from each cluster

3.7.3 Results & Discussions

We report a 78.4% validation accuracy on the up sampled dataset whereas the
downsampled dataset gives us a maximum accuracy of 59%. We can see the confu-
sion matrix from upsampled dataset in fig. 3.5 and from the downsampled dataset
in fig 3.6

The results we get are not satisfactory and linguistically there doesn’t seem to
be much difference in the articles between clusters in our dataset. This might be
explained by the fact that both the major parties in India tend to talk about same
topics. To confirm this, we ran took the intersection of top 100 entities from both
clusters and found out that 77% of them talked about the same entities.

This confirms our suspicion that linguistic features only are not enough for de-
tection of political bias.

30

Figure 3.5: Confusion matrix for Upsampled dataset

Figure 3.6: Confusion matrix for Downsampled dataset

31

Figure 3.7: Source Based Political Bias detection

3.8 Source Based political bias detection

We try another approach to find out bias. We use the clusters we get in section 3.5
to perform a source based analysis similar to the one in [6]. We use the clusters we
get to get the source bias of a particular source. Source based bias works pretty
well for extremely biased sites. These sites consistently push out narratives which
benefit a particular entity. The tricky part is identifying the political bias of Major
media houses. These sites generally show a subtle bias which would be hard to
pick up from linguistic signals alone, source based political bias detection does a
better job in this case. The methodology we followed is as follows

• We gather twitter mentions from twitter using crawlers as detailed in 3.3

• We then construct the Graph using either mentions or retweets similar to
what we do in section 3.4

• We run the clustering algorithm described in 3.4.3 to get clusters

• Then we get all the URLs mentioned in tweets from every cluster.

• We extract the domain names for every cluster.

• We compute the proportion of articles from a particular source in a particular
cluster

• We categorize the source bias towards political entities in the cluster where
the proportion of the sources is highest

We find out this corresponds well with the generally held beliefs about source
biases and shows improvements over the previous approach.After filtering out the
irrelevant sites like facebook, link shortening sites etc. we can see that the clusters
do share biased news articles more. We display the results from this exercise in
figure 3.7 The overall methodology is simple and works in most of the cases. One
limitation we found was that source bias calculated in such a way changes over
time. This makes calculation of the bias slightly harder. We leave this problem to
be explored further.

32

Chapter 4

Summary and Conclusions

In the first phase of the project we developed a system to crawl data and index it
with Apache Solr for searching effectively against the information already available
on fact checking and other news sites. We describe the challenges and problems
faced and how we solved them in this report.

In the second phase of the report we do various improvements to the system
and explore Political bias detection. We take the help of Twitter to find out bias of
users using Influence graph and construct a dataset with article body and the bias
they show towards a political cluster. We train the current state of the art classifier
on it to train a neural network which will identify the political bias of a given text.
After seeing the results we come to the conclusion that using only text to find out
the political bias is hard because of imperfect clustering and limitations of using
only English text.

33

Bibliography

[1] ScrapingHub, “Scrapy: A framework for extracting the data you need from
websites.” 2018. [Online]. Available: https://scrapy.org/

[2] ElasticsearchBV, “Elasticsearch is a distributed, restful search and
analytics engine.” 2018. [Online]. Available: https://www.elastic.co/products/
elasticsearch

[3] I. corporation, “Natural language processing for advanced text anal-
ysis.” 2018. [Online]. Available: https://www.ibm.com/watson/services/
natural-language-understanding/

[4] R. Smith, “An overview of the tesseract ocr engine,” in Proceedings of the
Ninth International Conference on Document Analysis and Recognition -
Volume 02, ser. ICDAR ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 629–633. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1304596.1304846

[5] ApacheSoftwareFoundation, “Solr is the popular, blazing-fast, open source
enterprise search platform built on apache lucene,” 2018. [Online]. Available:
http://lucene.apache.org/solr/

[6] Semeval2019, “Semeval task 4 : Hyperpartisan news detection,” 2019.
[Online]. Available: https://pan.webis.de/semeval19/semeval19-web/

[7] ascribe, “Image match library,” 2018. [Online]. Available: https://github.com/
ascribe/image-match

[8] M. D. Conover, J. Ratkiewicz, M. Francisco, B. Goncalves, A. Flammini, and
F. Menczer, “Political Polarization on Twitter,” p. 8.

[9] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding
of communities in large networks,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2008, no. 10, p. P10008, Oct. 2008, arXiv: 0803.0476.
[Online]. Available: http://arxiv.org/abs/0803.0476

[10] M. E. J. Newman, “Analysis of weighted networks,” Phys. Rev. E, vol. 70,
p. 056131, Nov 2004. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevE.70.056131

34

https://scrapy.org/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.ibm.com/watson/services/natural-language-understanding/
https://www.ibm.com/watson/services/natural-language-understanding/
http://dl.acm.org/citation.cfm?id=1304596.1304846
http://dl.acm.org/citation.cfm?id=1304596.1304846
http://lucene.apache.org/solr/
https://pan.webis.de/semeval19/semeval19-web/
https://github.com/ascribe/image-match
https://github.com/ascribe/image-match
http://arxiv.org/abs/0803.0476
https://link.aps.org/doi/10.1103/PhysRevE.70.056131
https://link.aps.org/doi/10.1103/PhysRevE.70.056131

[11] M. Ozer, N. Kim, and H. Davulcu, “Community detection in political
twitter networks using nonnegative matrix factorization methods,” CoRR, vol.
abs/1608.01771, 2016. [Online]. Available: http://arxiv.org/abs/1608.01771

[12] J. Howard and S. Ruder, “Fine-tuned language models for text classification,”
CoRR, vol. abs/1801.06146, 2018. [Online]. Available: http://arxiv.org/abs/
1801.06146

35

http://arxiv.org/abs/1608.01771
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146

	Introduction
	Previous Approaches
	Approach
	Fake News Detection system: Previous work
	Fake News Detection System Architecture
	Hyper-partisanship Detection & Political Bias estimation
	Report Plan

	Data: Crawling and pipelines
	Scrapy
	Architecture

	FND System Schema
	Extracting data
	Pipelines
	Deployment
	Available options
	Approach taken
	Running archive crawlers

	System services
	Directory structure
	Maintaining the state of last crawl
	Virtual Environments
	Logging
	Systemd services
	Cron jobs

	Challenges and their solutions
	Improvements and tweaks

	Political Bias Detection
	Previous Work : Hyper Partisanship detection
	Semeval 2019 Task 4: Hyper partisan News detection

	Political Bias detection using text in Indian Media
	Methodology for crawling twitter
	Constructing Influence Graph
	Mention graph
	Retweet graph
	Clustering Algorithm

	Clustering Results
	Organizing and Crawling Data
	Tweets
	Cluster IDs
	News Articles from twitter handles

	Text Classification
	Universal Language Model Fine Tuning
	Our Setup
	Results & Discussions

	Source Based political bias detection

	Summary and Conclusions
	Bibliography

